A uniqueness theorem for differential inclusions
نویسندگان
چکیده
منابع مشابه
An Infinite-time Relaxation Theorem for Differential Inclusions
The fundamental relaxation result for Lipschitz differential inclusions is the Filippov-Wažewski Relaxation Theorem, which provides approximations of trajectories of a relaxed inclusion on finite intervals. A complementary result is presented, which provides approximations on infinite intervals, but does not guarantee that the approximation and the reference trajectory satisfy the same initial ...
متن کاملFilippov’s Theorem for Impulsive Differential Inclusions with Fractional Order
In this paper, we present an impulsive version of Filippov’s Theorem for fractional differential inclusions of the form: D ∗ y(t) ∈ F (t, y(t)), a.e. t ∈ J\{t1, . . . , tm}, α ∈ (1, 2], y(t+k )− y(t − k ) = Ik(y(t − k )), k = 1, . . . ,m, y(t+k )− y (t−k ) = Ik(y (t−k )), k = 1, . . . ,m, y(0) = a, y′(0) = c, where J = [0, b], D ∗ denotes the Caputo fractional derivative and F is a setvalued ma...
متن کاملGeneralized Uniqueness Theorem for Ordinary Differential Equations in Banach Spaces
We consider nonlinear ordinary differential equations in Banach spaces. Uniqueness criterion for the Cauchy problem is given when any of the standard dissipative-type conditions does apply. A similar scalar result has been studied by Majorana (1991). Useful examples of reflexive Banach spaces whose positive cones have empty interior has been given as well.
متن کاملExistence and uniqueness theorem for uncertain differential equations
Canonical process is a Lipschitz continuous uncertain process with stationary and independent increments, and uncertain differential equation is a type of differential equations driven by canonical process. This paper presents some methods to solve linear uncertain differential equations, and proves an existence and uniqueness theorem of solution for uncertain differential equation under Lipsch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1990
ISSN: 0022-0396
DOI: 10.1016/0022-0396(90)90132-9